Definition:Euler's Number/Decimal Expansion
Jump to navigation
Jump to search
Definition
The decimal expansion of Euler's number $e$ starts:
- $2 \cdotp 71828 \, 18284 \, 59045 \, 23536 \, 02874 \, 71352 \, 66249 \, 77572 \, 47093 \, 69995 \ldots$
This sequence is A001113 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): Table $1.1$. Mathematical Constants
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 1$: Special Constants: $1.2$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Euler's Formula
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $3$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $2 \cdotp 718 \, 281 \, 828 \, 459 \, 045 \, 235 \, 360 \, 287 \, 471 \, 352 \, 662 \, 497 \, 757 \, 247 \, 093 \, 699 \ldots$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.2$: Numbers, Powers, and Logarithms
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $2 \cdotp 71828 \, 18284 \, 59045 \, 23536 \, 02874 \, 71352 \, 66249 \, 77572 \, 47093 \, 69995 \ldots$
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $5$: Eternal Triangles: The number $e$