Definition:Euler Numbers/Alternative Form/Definition 1

From ProofWiki
Jump to navigation Jump to search

Definition

The alternative form Euler numbers $E_n^*$ are a sequence of rational numbers defined as:

\(\ds \sech x\) \(=\) \(\ds 1 + \sum_{n \mathop = 1}^\infty \paren {-1}^n \frac {E_n^* x^{2 n} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds 1 - \frac {E_1^* x^2} {2!} + \frac {E_2^* x^4} {4!} - \frac {E_3^* x^6} {6!} + \cdots\)

where $\size x < \dfrac \pi 2 $.


Sequence of Euler Numbers: Alternative Form

The sequence of the alternative form of Euler numbers begins:

\(\ds E_1^*\) \(=\) \(\ds 1\) \(\ds = -E_2\)
\(\ds E_2^*\) \(=\) \(\ds 5\) \(\ds = E_4\)
\(\ds E_3^*\) \(=\) \(\ds 61\) \(\ds = -E_6\)
\(\ds E_4^*\) \(=\) \(\ds 1385\) \(\ds = E_8\)
\(\ds E_5^*\) \(=\) \(\ds 50 \, 521\) \(\ds = -E_{10}\)
\(\ds E_6^*\) \(=\) \(\ds 2 \, 702 \, 765\) \(\ds = E_{12}\)
\(\ds E_7^*\) \(=\) \(\ds 199 \, 360 \, 981\) \(\ds = -E_{14}\)
\(\ds E_8^*\) \(=\) \(\ds 19 \, 391 \, 512 \, 145\) \(\ds = E_{16}\)
\(\ds E_9^*\) \(=\) \(\ds 2 \, 404 \, 879 \, 675 \, 441\) \(\ds = -E_{18}\)
\(\ds E_{10}^*\) \(=\) \(\ds 370 \, 371 \, 188 \, 237 \, 525\) \(\ds = E_{20}\)
\(\ds E_{11}^*\) \(=\) \(\ds 69 \, 348 \, 874 \, 393 \, 137 \, 901\) \(\ds = -E_{22}\)
\(\ds E_{12}^*\) \(=\) \(\ds 15 \, 514 \, 534 \, 163 \, 557 \, 086 \, 905\) \(\ds = E_{24}\)

where $E_2, E_4, \ldots$ are the standard form Euler numbers.


Also see


Sources