Definition:Exponential Function/Real/Extension of Rational Exponential

From ProofWiki
Jump to navigation Jump to search


Let $e$ denote Euler's number.

Let $f: \Q \to \R$ denote the real-valued function defined as:

$\map f x = e^x$

That is, let $\map f x$ denote $e$ to the power of $x$, for rational $x$.

Then $\exp : \R \to \R$ is defined to be the unique continuous extension of $f$ to $\R$.

$\map \exp x$ is called the exponential of $x$.

Also see