# Definition:Extended Real Multiplication

## Definition

Let $\overline \R$ denote the extended real numbers.

Define extended real multiplication or multiplication on $\overline \R$, denoted $\times_{\overline \R}: \overline \R \times \overline \R \to \overline \R$, by:

$\forall x \in \overline \R: x \times_{\overline \R} 0 = 0 \times_{\overline \R} x = 0$
$\forall x, y \in \R: x \times_{\overline \R} y := x \times_\R y$ where $\times_\R$ denotes real multiplication
$\forall x \in \R_{>0}: x \times_{\overline \R} \paren {+\infty} = \paren {+\infty} \times_{\overline \R} x := +\infty$
$\forall x \in \R_{<0}: x \times_{\overline \R} \paren {+\infty} = \paren {+\infty} \times_{\overline \R} x := -\infty$
$\forall x \in \R_{>0}: x \times_{\overline \R} \paren {-\infty} = \paren {-\infty} \times_{\overline \R} x := -\infty$
$\forall x \in \R_{<0}: x \times_{\overline \R} \paren {-\infty} = \paren {-\infty} \times_{\overline \R} x := +\infty$
$\paren {+\infty} \times_{\overline \R} \paren {+\infty} := +\infty$
$\paren {-\infty} \times_{\overline \R} \paren {-\infty} := +\infty$
$\paren {+\infty} \times_{\overline \R} \paren {-\infty} := -\infty$
$\paren {-\infty} \times_{\overline \R} \paren {+\infty} := -\infty$

When no danger of confusion arises, $\times_{\overline \R}$ is usually replaced with the more familiar $\times$, or even suppressed.

From the definition of $\times_{\overline \R}$ on bona fide real numbers, the name extended real multiplication is appropriate: the real multiplication is indeed extended.