Definition:Faithful Functor

From ProofWiki
Jump to navigation Jump to search


Let $\mathbf C$ and $\mathbf D$ be metacategories.

Let $F: \mathbf C \to \mathbf D$ be a functor.

Then $F$ is faithful if and only if for all objects $C_1, C_2$ of $\mathbf C$:

$F: \map {\operatorname{Hom}_{\mathbf C} } {C_1, C_2} \to \map {\operatorname{Hom}_{\mathbf D} } {F C_1, F C_2}, \ f \mapsto F f$

is an injection.

Here $\operatorname{Hom}$ signifies a hom class.

Also see