Definition:Fibonacci Number/Negative
Jump to navigation
Jump to search
Definition
The definition of Fibonacci numbers for negative integers is an extension of the definition for positive integers:
- $F_n = \begin{cases} 0 & : n = 0 \\ 1 & : n = 1 \\ F_{n + 2} - F_{n + 1} & : n < 0 \end{cases}$
for all $n \in \Z$.
Sequence
The sequence of Fibonacci numbers for negative index begins:
- $\ldots, 89, -55, 34, -21, 13, -8, 5, -3, 2, -1, 1, 0$
Sources
- 1957: George Bergman: Number System with an Irrational Base (Math. Mag. Vol. 31, no. 2: pp. 98 – 110) www.jstor.org/stable/3029218
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.8$: Fibonacci Numbers: Exercise $8$
- For a video presentation of the contents of this page, visit the Khan Academy.