Definition:Fibonacci Number/Sequence
< Definition:Fibonacci Number(Redirected from Definition:Fibonacci Sequence)
Jump to navigation
Jump to search
Sequence of Fibonacci Numbers
The sequence of Fibonacci numbers begins:
- $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, \ldots$
This sequence is A000045 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $5$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): Tables: $3$ The First $40$ Fibonacci Numbers
- 1992: David Wells: Curious and Interesting Puzzles ... (previous) ... (next): Liber Abaci: $88$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.1$: Mathematical Induction
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.8$: Fibonacci Numbers: $(1)$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $5$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): Tables: $3$ The First $40$ Fibonacci Numbers
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Fibonacci sequence (Fibonacci, 1202)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Fibonacci sequence (Fibonacci, 1202)
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $4$: Lure of the Unknown: Cubic equations
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Fibonacci sequence