Definition:General Euclidean Metric

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\R^n$ be an $n$-dimensional real vector space.


The general Euclidean metrics are defined on $\R^n$ for $p \in \R_{\ge 1}$ as:

$\ds \map {d_p} {x, y} := \paren {\sum_{i \mathop = 1}^n \size {x_i - y_i}^p}^{\frac 1 p}$

where $x = \tuple {x_1, x_2, \ldots, x_n}, y = \tuple {y_1, y_2, \ldots, y_n} \in \R^n$.


That is, they are the $p$-product metrics on $\R^n$.


Special Cases

Some special cases of the general Euclidean metric are:


Standard Discrete Metric

The (standard) discrete metric on $\R^2$ is defined as:

$\map {d_0} {x, y} := \begin {cases}

0 & : x = y \\ 1 & : \exists i \in \set {1, 2}: x_i \ne y_i \end {cases}$

where $x = \tuple {x_1, x_2}, y = \tuple {y_1, y_2} \in \R^2$.


Taxicab Metric

The taxicab metric on $\R^n$ is defined as:

$\ds \map {d_1} {x, y} := \sum_{i \mathop = 1}^n \size {x_i - y_i}$

where $x = \tuple {x_1, x_2, \ldots, x_n}, y = \tuple {y_1, y_2, \ldots, y_n} \in \R^n$.


Euclidean Metric

The Euclidean metric on $\R^n$ is defined as:

$\ds \map {d_2} {x, y} := \paren {\sum_{i \mathop = 1}^n \paren {x_i - y_i}^2}^{1 / 2}$

where $x = \tuple {x_1, x_2, \ldots, x_n}, y = \tuple {y_1, y_2, \ldots, y_n} \in \R^n$.


Maximum Metric

The Chebyshev distance on $\R^n$ is defined as:

$\ds \map {d_\infty} {x, y}:= \max_{i \mathop = 1}^n \set {\size {x_i - y_i} }$

where $x = \tuple {x_1, x_2, \ldots, x_n}, y = \tuple {y_1, y_2, \ldots, y_n} \in \R^n$.


Also see


Note



Note that while $d_1, d_2, \ldots, d_\infty$ are all topologically equivalent, this is not the case with $d_0$.