Definition:Gentzen Proof System/Instance 1/Alpha-Rule/Notation

From ProofWiki
Jump to navigation Jump to search


Let $\mathscr G$ be instance 1 of a Gentzen proof system.

Let $\mathbf A$ be an $\alpha$-formula, with $\mathbf A_1, \mathbf A_2$ as in the table of $\alpha$-formulas.

In a tableau proof, the $\alpha$-rule can be used as follows:

Pool:    Empty.      
Formula:    $U_1 \cup U_2 \cup \set {\mathbf A}$.      
Description:    $\alpha$-Rule.      
Depends on:    The lines containing $U_1 \cup \set {\mathbf A_1}$ and $U_2 \cup \set {\mathbf A_2}$.      
Abbreviation:    $\alpha \circ$, where $\circ$ is the binary logical connective such that $\mathbf A = \mathbf A_1 \circ \mathbf A_2$ or $\mathbf A = \neg \paren {\mathbf A_1 \circ \mathbf A_2}$, or $\neg \neg$ in the case that $\mathbf A = \neg \neg \mathbf A_1$.