Definition:Golden Mean/Definition 2
Jump to navigation
Jump to search
Definition
The golden mean is the unique positive real number $\phi$ satisfying:
- $\phi = \dfrac {1 + \sqrt 5} 2$
Decimal Expansion
The decimal expansion of the golden mean starts:
- $\phi \approx 1 \cdotp 61803 \, 39887 \, 49894 \, 84820 \, 45868 \, 34365 \, 63811 \, 77203 \, 09179 \, 80576 \ldots$
Also see
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.1$: Mathematical Induction
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.8$: Fibonacci Numbers
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $2$: The Logic of Shape: The golden mean