Definition:Hilbert Matrix
Jump to navigation
Jump to search
Definition
A Hilbert matrix is an order $n$ square submatrix of the infinite Hilbert matrix, consisting of the elements in the first $n$ rows and columns of that matrix.
Thus it is an $n \times n$ matrix whose elements are defined as:
- $a_{i j} = \dfrac 1 {i + j - 1}$
The order $6$ Hilbert matrix is:
- $\begin {bmatrix} 1 & \tfrac 1 2 & \tfrac 1 3 & \tfrac 1 4 & \tfrac 1 5 & \tfrac 1 6 \\ \tfrac 1 2 & \tfrac 1 3 & \tfrac 1 4 & \tfrac 1 5 & \tfrac 1 6 & \tfrac 1 7 \\ \tfrac 1 3 & \tfrac 1 4 & \tfrac 1 5 & \tfrac 1 6 & \tfrac 1 7 & \tfrac 1 8 \\ \tfrac 1 4 & \tfrac 1 5 & \tfrac 1 6 & \tfrac 1 7 & \tfrac 1 8 & \tfrac 1 9 \\ \tfrac 1 5 & \tfrac 1 6 & \tfrac 1 7 & \tfrac 1 8 & \tfrac 1 9 & \tfrac 1 {10} \\ \tfrac 1 6 & \tfrac 1 7 & \tfrac 1 8 & \tfrac 1 9 & \tfrac 1 {10} & \tfrac 1 {11} \end {bmatrix}$
Source of Name
This entry was named for David Hilbert.
Sources
- 1961: John Todd: Computational problems concerning the Hilbert matrix (J. Res. Natl. Bur. Stand. Ser. B Vol. 65: pp. 19 – 22)
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Hilbert matrix
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.3$: Sums and Products: Exercise $45$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Hilbert matrix
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Hilbert matrix