Definition:Hilbert Matrix

From ProofWiki
Jump to navigation Jump to search

Definition

A Hilbert matrix is an order $n$ square submatrix of the infinite Hilbert matrix, consisting of the elements in the first $n$ rows and columns of that matrix.

Thus it is an $n \times n$ matrix whose elements are defined as:

$a_{i j} = \dfrac 1 {i + j - 1}$


The order $6$ Hilbert matrix is:

$\begin {bmatrix} 1 & \tfrac 1 2 & \tfrac 1 3 & \tfrac 1 4 & \tfrac 1 5 & \tfrac 1 6 \\ \tfrac 1 2 & \tfrac 1 3 & \tfrac 1 4 & \tfrac 1 5 & \tfrac 1 6 & \tfrac 1 7 \\ \tfrac 1 3 & \tfrac 1 4 & \tfrac 1 5 & \tfrac 1 6 & \tfrac 1 7 & \tfrac 1 8 \\ \tfrac 1 4 & \tfrac 1 5 & \tfrac 1 6 & \tfrac 1 7 & \tfrac 1 8 & \tfrac 1 9 \\ \tfrac 1 5 & \tfrac 1 6 & \tfrac 1 7 & \tfrac 1 8 & \tfrac 1 9 & \tfrac 1 {10} \\ \tfrac 1 6 & \tfrac 1 7 & \tfrac 1 8 & \tfrac 1 9 & \tfrac 1 {10} & \tfrac 1 {11} \end {bmatrix}$


Source of Name

This entry was named for David Hilbert.


Sources