Definition:Hilbert Proof System

From ProofWiki
Jump to navigation Jump to search

Definition

Hilbert proof systems are a class of proof systems for propositional and predicate logic.

Their characteristics include:

Specific instances may deviate from this general scheme at some points.

Examples in Predicate Logic



Examples in Propositional Logic

Instance 1

This instance of a Hilbert proof system is used in:


Let $\LL$ be the language of propositional logic.


$\mathscr H$ has the following axioms and rules of inference:


Axioms

Let $\mathbf A, \mathbf B, \mathbf C$ be WFFs.

The following three WFFs are axioms of $\mathscr H$:

Axiom 1:    \(\ds \mathbf A \implies \paren {\mathbf B \implies \mathbf A} \)      
Axiom 2:    \(\ds \paren {\mathbf A \implies \paren {\mathbf B \implies \mathbf C} } \implies \paren {\paren {\mathbf A \implies \mathbf B} \implies \paren {\mathbf A \implies \mathbf C} } \)      
Axiom 3:    \(\ds \paren {\neg \mathbf B \implies \neg \mathbf A} \implies \paren {\mathbf A \implies \mathbf B} \)      


Rules of Inference

The sole rule of inference is Modus Ponendo Ponens:

From $\mathbf A$ and $\mathbf A \implies \mathbf B$, one may infer $\mathbf B$.


Instance 2

This instance of a Hilbert proof system is used in:


Let $\LL$ be the language of propositional logic.


$\HH$ has the following axioms and rules of inference:


Axioms

Let $p, q, r$ be propositional variables.

Then the following WFFs are axioms of $\mathscr H$:

\((\text A 1)\)   $:$   Rule of Idempotence    \(\ds (p \lor p) \implies p \)      
\((\text A 2)\)   $:$   Rule of Addition    \(\ds q \implies (p \lor q) \)      
\((\text A 3)\)   $:$   Rule of Commutation    \(\ds (p \lor q) \implies (q \lor p) \)      
\((\text A 4)\)   $:$   Factor Principle    \(\ds (q \implies r) \implies \left({ (p \lor q) \implies (p \lor r)}\right) \)      


Rules of Inference

$\text {RST} 1$: Rule of Uniform Substitution



Any WFF $\mathbf A$ may be substituted for any propositional variable $p$ in a $\mathscr H_2$-theorem $\mathbf B$.

The resulting theorem can be denoted $\mathbf B \paren {\mathbf A \mathbin{//} p}$.

See the Rule of Substitution.


$\text {RST} 2$: Rule of Substitution by Definition

The following expressions are regarded definitional abbreviations:

\((1)\)   $:$   Conjunction       \(\ds \mathbf A \land \mathbf B \)   \(\ds =_{\text{def} } \)   \(\ds \neg \left({ \neg \mathbf A \lor \neg \mathbf B }\right) \)      
\((2)\)   $:$   Conditional       \(\ds \mathbf A \implies \mathbf B \)   \(\ds =_{\text{def} } \)   \(\ds \neg \mathbf A \lor \mathbf B \)      
\((3)\)   $:$   Biconditional       \(\ds \mathbf A \iff \mathbf B \)   \(\ds =_{\text{def} } \)   \(\ds (\mathbf A \implies \mathbf B) \land (\mathbf B \implies \mathbf A) \)      


$\text {RST} 3$: Rule of Detachment

If $\mathbf A \implies \mathbf B$ and $\mathbf A$ are theorems of $\mathscr H$, then so is $\mathbf B$.

That is, Modus Ponendo Ponens.


$\text {RST} 4$: Rule of Adjunction

If $\mathbf A$ and $\mathbf B$ are theorems of $\mathscr H$, then so is $\mathbf A \land \mathbf B$.

That is, the Rule of Conjunction.

(This rule can be proved from the other three and so is only a convenience.)


Source of Name

This entry was named for David Hilbert.