Definition:Image (Relation Theory)/Relation/Relation/General Definition

From ProofWiki
Jump to navigation Jump to search


Let $\ds \prod_{i \mathop = 1}^n S_i$ be the cartesian product of sets $S_1$ to $S_n$.

Let $\ds \RR \subseteq \prod_{i \mathop = 1}^n S_i$ be an $n$-ary relation on $\ds \prod_{i \mathop = 1}^n S_i$.

The image of $\RR$ is the set defined as:

$\Img \RR := \set {s_n \in S_n: \exists \tuple {s_1, s_2, \ldots, s_{n - 1} } \in \ds \prod_{i \mathop = 1}^{n - 1} S_i: \tuple {s_1, s_2, \ldots, s_n} \in \RR}$

The concept is usually encountered when $\RR$ is an endorelation on $S$:

$\Img \RR := \set {s_n \in S: \exists \tuple {s_1, s_2, \ldots, s_{n - 1} } \in S^{n - 1}: \tuple {s_1, s_2, \ldots, s_n} \in \RR}$

Technical Note

The $\LaTeX$ code for \(\Img {f}\) is \Img {f} .

When the argument is a single character, it is usual to omit the braces:

\Img f