Definition:Index of Linear Transformation
Jump to navigation
Jump to search
Definition
Let $U, V$ be vector spaces over a field $K$.
Let $T: U \to V$ be a linear transformation of finite index.
The index of $T$ is defined as:
- $\map {\mathrm{ind} } T := \map \dim {\map \ker T} - \map {\mathrm {codim}} {\Img T}$
where:
- $\map \dim {\map \ker T}$ denotes the dimension of the kernel
- $\map {\mathrm {codim}} {\Img T}$ denotes the codimension of image in $V$
Also see
- Linear Transformation has Finite Index iff Pseudoinverse exists
- Definition:Pseudoinverse of Linear Transformation
Sources
- 2002: Peter D. Lax: Functional Analysis: Chapter $27$: Index Theory