Definition:Inverse Cosecant/Arccosecant

From ProofWiki
Jump to navigation Jump to search

Definition

Real Numbers

Arccosecant Function

From Shape of Cosecant Function, we have that $\csc x$ is continuous and strictly decreasing on the intervals $\hointr {-\dfrac \pi 2} 0$ and $\hointl 0 {\dfrac \pi 2}$.

From the same source, we also have that:

$\csc x \to + \infty$ as $x \to 0^+$
$\csc x \to - \infty$ as $x \to 0^-$


Let $g: \hointr {-\dfrac \pi 2} 0 \to \hointl {-\infty} {-1}$ be the restriction of $\csc x$ to $\hointr {-\dfrac \pi 2} 0$.

Let $h: \hointl 0 {\dfrac \pi 2} \to \hointr 1 \infty$ be the restriction of $\csc x$ to $\hointl 0 {\dfrac \pi 2}$.

Let $f: \closedint {-\dfrac \pi 2} {\dfrac \pi 2} \setminus \set 0 \to \R \setminus \openint {-1} 1$:

$\map f x = \begin{cases} \map g x & : -\dfrac \pi 2 \le x < 0 \\ \map h x & : 0 < x \le \dfrac \pi 2 \end{cases}$


From Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly decreasing on $\hointl {-\infty} {-1}$.

From Inverse of Strictly Monotone Function, $\map h x$ admits an inverse function, which will be continuous and strictly decreasing on $\hointr 1 \infty$.

As both the domain and range of $g$ and $h$ are disjoint, it follows that:

$\map {f^{-1} } x = \begin {cases} \map {g^{-1} } x & : x \le -1 \\ \map {h^{-1} } x & : x \ge 1 \end {cases}$


This function $\map {f^{-1} } x$ is called arccosecant of $x$.

Thus:

The domain of the arccosecant is $\R \setminus \openint {-1} 1$
The image of the arccosecant is $\closedint {-\dfrac \pi 2} {\dfrac \pi 2} \setminus \set 0$.


Complex Plane

The principal branch of the complex inverse cosecant function is defined as:

$\forall z \in \C_{\ne 0}: \map \arccsc z := \dfrac 1 i \, \map \Ln {\dfrac {i + \sqrt {z^2 - 1} } z}$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {z^2 - 1}$ denotes the principal square root of $z^2 - 1$.


Terminology

There exists the popular but misleading notation $\csc^{-1} x$, which is supposed to denote the inverse cosecant function.

However, note that as $\csc x$ is not an injection, it does not have a well-defined inverse.

The $\arccsc$ function as defined here has a well-specified image which (to a certain extent) is arbitrarily chosen for convenience.

Therefore it is preferred to the notation $\csc^{-1} x$, which (as pointed out) can be confusing and misleading.

Sometimes, $\operatorname {Csc}^{-1}$ (with a capital $\text {C}$) is taken to mean the same as $\arccsc$.

However this can also be confusing due to the visual similarity between that and the lowercase $\text {c}$.


Some sources hyphenate: arc-cosecant.


Symbol

The symbol used to denote the arccosecant function is variously seen as follows:


arccsc

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccosecant function is $\arccsc$.


arccosec

A variant symbol used to denote the arccosecant function is $\operatorname {arccosec}$.


acsc

A variant symbol used to denote the arccosecant function is $\operatorname {acsc}$.


acosec

A variant symbol used to denote the arccosecant function is $\operatorname {acosec}$.