Definition:Kernel (Abstract Algebra)

From ProofWiki
Jump to navigation Jump to search

This page is about Kernel in the context of Abstract Algebra. For other uses, see Kernel.

Definition

Kernel of Magma Homomorphism

Let $\struct {S, \circ}$ be a magma.

Let $\struct {T, *}$ be a magma with an identity element $e$.

Let $\phi: \struct {S, \circ} \to \struct {T, *}$ be a magma homomorphism.


The kernel of $\phi$ is the subset of the domain of $\phi$ defined as:

$\map \ker \phi = \set {x \in S: \map \phi x = e}$


That is, $\map \ker \phi$ is the subset of $S$ that maps to the identity of $T$.


Kernel of Group Homomorphism

Let $\struct {G, \circ}$ and $\struct {H, *}$ be groups.

Let $\phi: \struct {G, \circ} \to \struct {H, *}$ be a group homomorphism.


The kernel of $\phi$ is the subset of the domain of $\phi$ defined as:

$\map \ker \phi := \phi^{-1} \sqbrk {e_H} = \set {x \in G: \map \phi x = e_H}$

where $e_H$ is the identity of $H$.


That is, $\map \ker \phi$ is the subset of $G$ that maps to the identity of $H$.


Kernel of Ring Homomorphism

Let $\struct {R_1, +_1, \circ_1}$ and $\struct {R_2, +_2, \circ_2}$ be rings.

Let $\phi: \struct {R_1, +_1, \circ_1} \to \struct {R_2, +_2, \circ_2}$ be a ring homomorphism.


The kernel of $\phi$ is the subset of the domain of $\phi$ defined as:

$\map \ker \phi = \set {x \in R_1: \map \phi x = 0_{R_2} }$

where $0_{R_2}$ is the zero of $R_2$.


That is, $\map \ker \phi$ is the subset of $R_1$ that maps to the zero of $R_2$.


From Ring Homomorphism Preserves Zero it follows that $0_{R_1} \in \map \ker \phi$ where $0_{R_1}$ is the zero of $R_1$.


Kernel of Linear Transformation

Let $\phi: G \to H$ be a linear transformation where $G$ and $H$ are $R$-modules.

Let $e_H$ be the identity of $H$.


The kernel of $\phi$ is defined as:

$\map \ker \phi := \phi^{-1} \sqbrk {\set {e_H} }$

where $\phi^{-1} \sqbrk S$ denotes the preimage of $S$ under $\phi$.


In Vector Space

Let $\struct {\mathbf V, +, \times}$ be a vector space.

Let $\struct {\mathbf V', +, \times}$ be a vector space whose zero vector is $\mathbf 0'$.

Let $T: \mathbf V \to \mathbf V'$ be a linear transformation.


Then the kernel of $T$ is defined as:

$\map \ker T := T^{-1} \sqbrk {\set {\mathbf 0'} } = \set {\mathbf x \in \mathbf V: \map T {\mathbf x} = \mathbf 0'}$


Kernel of Homomorphism of Differential Complexes

Let $\struct {R, +, \cdot}$ be a ring.

Let:

$M: \quad \cdots \longrightarrow M_i \stackrel {d_i} \longrightarrow M_{i + 1} \stackrel {d_{i + 1} } \longrightarrow M_{i + 2} \stackrel {d_{i + 2} } \longrightarrow \cdots$

and

$N: \quad \cdots \longrightarrow N_i \stackrel {d'_i} \longrightarrow N_{i + 1} \stackrel {d'_{i + 1} } \longrightarrow N_{i + 2} \stackrel {d'_{i + 2} } \longrightarrow \cdots$

be two differential complexes of $R$-modules.

Let $\phi = \set {\phi_i : i \in \Z}$ be a homomorphism $M \to N$.

For each $i \in \Z$ let $K_i$ be the kernel of $\phi_i$.

For each $i \in \Z$ let $f_i$ be the restriction of $d_i$ to $K_i$.


Then the kernel of $\phi$ is:

$\ker \phi : \quad \cdots \longrightarrow K_i \stackrel {f_i} \longrightarrow K_{i + 1} \stackrel {f_{i + 1} } \longrightarrow K_{i + 2} \stackrel {f_{i + 2} } \longrightarrow \cdots$