Definition:Kernel of Homomorphism of Differential Complexes

From ProofWiki
Jump to navigation Jump to search

This page is about Kernel in the context of Homological Algebra. For other uses, see Kernel.

Definition

Let $\struct {R, +, \cdot}$ be a ring.

Let:

$M: \quad \cdots \longrightarrow M_i \stackrel {d_i} \longrightarrow M_{i + 1} \stackrel {d_{i + 1} } \longrightarrow M_{i + 2} \stackrel {d_{i + 2} } \longrightarrow \cdots$

and

$N: \quad \cdots \longrightarrow N_i \stackrel {d'_i} \longrightarrow N_{i + 1} \stackrel {d'_{i + 1} } \longrightarrow N_{i + 2} \stackrel {d'_{i + 2} } \longrightarrow \cdots$

be two differential complexes of $R$-modules.

Let $\phi = \set {\phi_i : i \in \Z}$ be a homomorphism $M \to N$.

For each $i \in \Z$ let $K_i$ be the kernel of $\phi_i$.

For each $i \in \Z$ let $f_i$ be the restriction of $d_i$ to $K_i$.


Then the kernel of $\phi$ is:

$\ker \phi : \quad \cdots \longrightarrow K_i \stackrel {f_i} \longrightarrow K_{i + 1} \stackrel {f_{i + 1} } \longrightarrow K_{i + 2} \stackrel {f_{i + 2} } \longrightarrow \cdots$


Also see