Definition:Limit Inferior of Moore-Smith Sequence

From ProofWiki
Jump to navigation Jump to search



Definition



Let $\left({S, \preceq}\right)$ be a directed set.

Let $L = \left({T, \precsim}\right)$ be a complete lattice.

Let $N: S \to T$ be a Moore-Smith sequence in $T$.


Then limit inferior of $N$ is defined as follows:

$\liminf N := \sup_L \left\{ {\inf_L \left({N \left[{\preceq \left({j}\right)}\right]}\right): j \in S}\right\}$

where

$\preceq \left({j}\right)$ denotes the image of $j$ by $\preceq$,
$N \left[{\preceq \left({j}\right)}\right]$ denotes the image of $\preceq \left({j}\right)$ under $N$.


Sources