Definition:Linear Combination of Subsets of Vector Space/Dilation

From ProofWiki
Jump to navigation Jump to search

Definition

Let $K$ be a field.

Let $X$ be a vector space over $K$.

Let $E$ be a subset of $X$ and let $\lambda \in K$.


We define the dilation of $E$ by $\lambda$, written $\lambda E$, by:

$\lambda E = \set {\lambda x : x \in E}$


Sources