Definition:Max Operation/General Definition/Real Numbers

From ProofWiki
Jump to navigation Jump to search


The max operation on the real cartesian space $\R^n$ is the real-valued function $\max: \R^n \to \R$ defined recursively as:

$\forall x := \family {x_i}_{1 \mathop \le i \mathop \le n} \in \R^n: \map \max x = \begin{cases}

x_1 & : n = 1 \\ \map \max {x_1, x_2} & : n = 2 \\ \map \max {\map \max {x_1, \ldots, x_{n - 1} }, x_n} & : n > 2 \\ \end{cases}$

where $\map \max {x, y}$ is the binary max operation on $\R \times \R$.