Definition:Modulo Addition
Definition
Definition 1
Let $m \in \Z$ be an integer.
Let $\Z_m$ be the set of integers modulo $m$:
- $\Z_m = \set {\eqclass 0 m, \eqclass 1 m, \ldots, \eqclass {m - 1} m}$
where $\eqclass x m$ is the residue class of $x$ modulo $m$.
The operation of addition modulo $m$ is defined on $\Z_m$ as:
- $\eqclass a m +_m \eqclass b m = \eqclass {a + b} m$
Definition 2
Let $m \in \Z$ be an integer.
Let $\Z_m$ be the set of integers modulo $m$:
- $\Z_m = \set {0, 1, \ldots, m - 1}$
The operation of addition modulo $m$ is defined on $\Z_m$ as:
Definition 3
Let $m \in \Z$ be an integer.
Let $\Z_m$ be the set of integers modulo $m$:
- $\Z_m = \set {0, 1, \ldots, m - 1}$
The operation of addition modulo $m$ is defined on $\Z_m$ as:
- $a +_m b := a + b - k m$
where $j$ is the largest integer such that $k m \le a + b$.
Also denoted as
Although the operation of addition modulo $m$ is denoted by the symbol $+_m$, if there is no danger of confusion, the conventional addition symbol $+$ etc. is often used instead.
The notation for addition of two residue classes modulo $m$ is not usually $\eqclass a m +_m \eqclass b m$.
What is more normally seen is $a + b \pmod m$.
Cayley Table
The additive group of integers modulo $m$ can be described by showing its Cayley table.
Modulo 3
- $\begin{array}{r|rrr} \struct {\Z_3, +_3} & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \hline \eqclass 0 3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \eqclass 1 3 & \eqclass 1 3 & \eqclass 2 3 & \eqclass 0 0 \\ \eqclass 2 3 & \eqclass 2 3 & \eqclass 0 3 & \eqclass 1 3 \\ \end{array}$
Modulo 4
- $\begin{array}{r|rrrr} \struct {\Z_4, +_4} & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \hline \eqclass 0 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \eqclass 1 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 & \eqclass 0 4 \\ \eqclass 2 4 & \eqclass 2 4 & \eqclass 3 4 & \eqclass 0 4 & \eqclass 1 4 \\ \eqclass 3 4 & \eqclass 3 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 \\ \end{array}$
Modulo 5
- $\begin{array} {r|rrrrr} \struct {\Z_5, +_5} & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 \\ \hline \eqclass 0 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 \\ \eqclass 1 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 \\ \eqclass 2 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 \\ \eqclass 3 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 \\ \eqclass 4 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 \\ \end{array}$
Modulo 6
- $\begin{array}{r|rrrrrr} \struct {\Z_6, +_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 1 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 \\ \eqclass 2 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 \\ \eqclass 3 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 \\ \eqclass 4 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 \\ \eqclass 5 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 \\ \end{array}$
Also see
- Results about modulo addition can be found here.
Sources
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): addition modulo n
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): modulo $n$, addition and multiplication