Definition:Morphism of Cones
Jump to navigation
Jump to search
Definition
Let $\mathbf C$ be a metacategory.
Let $D: \mathbf J \to \mathbf C$ be a $\mathbf J$-diagram in $\mathbf C$.
Let $\struct {C, c_j}$ and $\struct {C', c'_j}$ be cones to $D$.
Let $f: C \to C'$ be a morphism of $\mathbf C$.
Then $f$ is a morphism of cones if and only if, for all objects $j$ of $\mathbf J$:
- $\begin{xy}\[email protected][email protected]+2px{ C \ar[r]^*+{f} \ar[dr]_*+{c_j} & C' \ar[d]^*+{c'_j} \\ & D_j }\end{xy}$
is a commutative diagram.
Sources
- 2010: Steve Awodey: Category Theory (2nd ed.) ... (previous) ... (next): $\S 5.4$: Definition $5.15$