Definition:Ordering Compatible with Ring Structure
Jump to navigation
Jump to search
Definition
Let $\struct {R, +, \circ}$ be a ring whose zero is $0_R$.
An ordering $\preccurlyeq$ on $R$ is compatible with the ring structure of $R$ if and only if $\preccurlyeq$ satisies the ring compatible ordering axioms:
\((\text {OR} 1)\) | $:$ | $\preccurlyeq$ is compatible with $+$: | \(\ds \forall a, b, c \in R:\) | \(\ds a \preccurlyeq b \) | \(\ds \implies \) | \(\ds \paren {a + c} \preccurlyeq \paren {b + c} \) | |||
\((\text {OR} 2)\) | $:$ | Product of Positive Elements is Positive | \(\ds \forall a, b \in R:\) | \(\ds 0_R \preccurlyeq x, 0_R \preccurlyeq y \) | \(\ds \implies \) | \(\ds 0_R \preccurlyeq x \circ y \) |
Also see
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {IV}$: Rings and Fields: $23$. The Field of Rational Numbers