Definition:Polynomial Function/Real/Definition 1
Jump to navigation
Jump to search
Definition
Let $S \subset \R$ be a subset of the real numbers.
A real polynomial function on $S$ is a function $f: S \to \R$ for which there exist:
- a natural number $n\in \N$
- real numbers $a_0, \ldots, a_n \in \R$
such that for all $x \in S$:
- $\map f x = \ds \sum_{k \mathop = 0}^n a_k x^k$
where $\sum$ denotes indexed summation.
Also see
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 3$: Natural Numbers: Exercise $\S 3.11 \ (3)$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 7.6$