Definition:Primorial/Prime
Jump to navigation
Jump to search
Definition
Let $p_n$ be the $n$th prime number.
Then the $n$th primorial $p_n \#$ is defined as:
- $\ds p_n \# := \prod_{k \mathop = 1}^n p_k$
That is, $p_n \#$ is the product of the first $n$ primes.
Examples
The first few primorials (of both types) are as follows:
\(\ds 0\# \ \ \) | \(\ds = p_0 \#\) | \(=\) | \(\ds \) | \(\ds = 1\) | ||||||||||
\(\ds 1\# \ \ \) | \(\ds = p_0 \#\) | \(=\) | \(\ds \) | \(\ds = 1\) | ||||||||||
\(\ds 2\# \ \ \) | \(\ds = p_1 \#\) | \(=\) | \(\ds \) | \(\ds = 2\) | ||||||||||
\(\ds 3\# \ \ \) | \(\ds = p_2\#\) | \(=\) | \(\ds 2 \times 3\) | \(\ds = 6\) | ||||||||||
\(\ds 4\# \ \ \) | \(\ds = p_2\#\) | \(=\) | \(\ds 2 \times 3\) | \(\ds = 6\) | ||||||||||
\(\ds 5\# \ \ \) | \(\ds = p_3\#\) | \(=\) | \(\ds 2 \times 3 \times 5\) | \(\ds = 30\) | ||||||||||
\(\ds 6\# \ \ \) | \(\ds = p_3\#\) | \(=\) | \(\ds 2 \times 3 \times 5\) | \(\ds = 30\) | ||||||||||
\(\ds 7\# \ \ \) | \(\ds = p_4\#\) | \(=\) | \(\ds 2 \times 3 \times 5 \times 7\) | \(\ds = 210\) | ||||||||||
\(\ds 8\# \ \ \) | \(\ds = p_4\#\) | \(=\) | \(\ds 2 \times 3 \times 5 \times 7\) | \(\ds = 210\) | ||||||||||
\(\ds 9\# \ \ \) | \(\ds = p_4\#\) | \(=\) | \(\ds 2 \times 3 \times 5 \times 7\) | \(\ds = 210\) | ||||||||||
\(\ds 10\# \ \ \) | \(\ds = p_4\#\) | \(=\) | \(\ds 2 \times 3 \times 5 \times 7\) | \(\ds = 210\) | ||||||||||
\(\ds 11\# \ \ \) | \(\ds = p_5\#\) | \(=\) | \(\ds 2 \times 3 \times 5 \times 7 \times 11\) | \(\ds = 2310\) | ||||||||||
\(\ds 12\# \ \ \) | \(\ds = p_5\#\) | \(=\) | \(\ds 2 \times 3 \times 5 \times 7 \times 11\) | \(\ds = 2310\) | ||||||||||
\(\ds 13\# \ \ \) | \(\ds = p_6\#\) | \(=\) | \(\ds 2 \times 3 \times 5 \times 7 \times 11 \times 13\) | \(\ds = 30 \, 030\) |
The sequence contines:
- $1, 2, 6, 30, 210, 2310, 30 \, 030, 510 \, 510, 9 \, 699 \, 690, 223 \, 092 \, 870, \ldots$
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $30$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): Glossary
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $30$
- Weisstein, Eric W. "Primorial." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Primorial.html