Definition:R-Algebraic Structure Homomorphism
Jump to navigation
Jump to search
Definition
Let $R$ be a ring.
Let $\struct {S, \ast_1, \ast_2, \ldots, \ast_n, \circ}_R$ and $\struct {T, \odot_1, \odot_2, \ldots, \odot_n, \otimes}_R$ be $R$-algebraic structures.
Let $\phi: S \to T$ be a mapping.
Then $\phi$ is an $R$-algebraic structure homomorphism if and only if:
- $(1): \quad \forall k \in \closedint 1 n: \forall x, y \in S: \map \phi {x \ast_k y} = \map \phi x \odot_k \map \phi y$
- $(2): \quad \forall x \in S: \forall \lambda \in R: \map \phi {\lambda \circ x} = \lambda \otimes \map \phi x$
where $\closedint 1 n = \set {1, 2, \ldots, n}$ denotes an integer interval.
Note that this definition also applies to modules and vector spaces.
Also see
Linguistic Note
The word homomorphism comes from the Greek morphe (μορφή) meaning form or structure, with the prefix homo- meaning similar.
Thus homomorphism means similar structure.
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {V}$: Vector Spaces: $\S 28$. Linear Transformations