Definition:Ideal of Ring/Right Ideal
< Definition:Ideal of Ring(Redirected from Definition:Right Ideal of Ring)
Jump to navigation
Jump to search
This page is about Right Ideal of Ring in the context of Ring Theory. For other uses, see Ideal.
Definition
Let $\struct {R, +, \circ}$ be a ring.
Let $\struct {J, +}$ be a subgroup of $\struct {R, +}$.
$J$ is a right ideal of $R$ if and only if:
- $\forall j \in J: \forall r \in R: j \circ r \in J$
that is, if and only if:
- $\forall r \in R: J \circ r \subseteq J$
Also see
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {IV}$: Rings and Fields: $22$. New Rings from Old: Exercise $22.22$
- 1972: A.G. Howson: A Handbook of Terms used in Algebra and Analysis ... (previous) ... (next): $\S 6$: Rings and fields
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): ideal
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): ideal