Definition:Ring of Sets

From ProofWiki
Jump to navigation Jump to search

This page is about Ring of Sets in the context of Set Theory. For other uses, see Ring.

Definition

Definition 1

A system of sets $\RR$ is a ring of sets if and only if $\RR$ satisfies the ring of sets axioms:

\((\text {RS} 1_1)\)   $:$   Non-Empty:    \(\ds \RR \ne \O \)      
\((\text {RS} 2_1)\)   $:$   Closure under Intersection:      \(\ds \forall A, B \in \RR:\) \(\ds A \cap B \in \RR \)      
\((\text {RS} 3_1)\)   $:$   Closure under Symmetric Difference:      \(\ds \forall A, B \in \RR:\) \(\ds A \symdif B \in \RR \)      


Definition 2

A system of sets $\RR$ is a ring of sets if and only if $\RR$ satisfies the ring of sets axioms:

\((\text {RS} 1_2)\)   $:$   Empty Set:    \(\ds \O \in \RR \)      
\((\text {RS} 2_2)\)   $:$   Closure under Set Difference:      \(\ds \forall A, B \in \RR:\) \(\ds A \setminus B \in \RR \)      
\((\text {RS} 3_2)\)   $:$   Closure under Union:      \(\ds \forall A, B \in \RR:\) \(\ds A \cup B \in \RR \)      


Definition 3

A system of sets $\RR$ is a ring of sets if and only if $\RR$ satisfies the ring of sets axioms:

\((\text {RS} 1_3)\)   $:$   Empty Set:    \(\ds \O \in \RR \)      
\((\text {RS} 2_3)\)   $:$   Closure under Set Difference:      \(\ds \forall A, B \in \RR:\) \(\ds A \setminus B \in \RR \)      
\((\text {RS} 3_3)\)   $:$   Closure under Disjoint Union:      \(\ds \forall A, B \in \RR:\) \(\ds A \cap B = \O \implies A \cup B \in \RR \)      


Also defined as

Some sources neglect to suggest that a ring of sets needs to be non-empty.


Also see

  • Results about rings of sets can be found here.