Definition:Sigma-Ring/Definition 2
Jump to navigation
Jump to search
Definition
Let $\Sigma$ be a system of sets.
$\Sigma$ is a $\sigma$-ring if and only if $\Sigma$ satisfies the $\sigma$-ring axioms:
\((\text {SR} 1)\) | $:$ | Empty Set: | \(\ds \O \in \Sigma \) | ||||||
\((\text {SR} 2)\) | $:$ | Closure under Set Difference: | \(\ds \forall A, B \in \Sigma:\) | \(\ds A \setminus B \in \Sigma \) | |||||
\((\text {SR} 3)\) | $:$ | Closure under Countable Unions: | \(\ds \forall A_n \in \Sigma: n = 1, 2, \ldots:\) | \(\ds \bigcup_{n \mathop = 1}^\infty A_n \in \Sigma \) |
Also see
Linguistic Note
The $\sigma$ in $\sigma$-ring is the Greek letter sigma which equates to the letter s.
$\sigma$ stands for for somme, which is French for union.
Sources
- 1970: Avner Friedman: Foundations of Modern Analysis ... (previous) ... (next): $\S 1.1$: Rings and Algebras: Definition $1.1.2$