Definition:Sublinear Functional
Jump to navigation
Jump to search
Definition
Let $V$ be a vector space over $\R$.
Let $p : V \to \R$ be a function.
We say that $p$ is a sublinear functional if and only if:
- $(1): \quad$ $\map p {x + y} \le \map p x + \map p y$ for each $x, y \in V$
- $(2): \quad$ $\map p {\lambda x} = \lambda \map p x$ for each $x \in V$ and $\lambda \in \R_{\ge 0}$.
Sources
- 2020: James C. Robinson: Introduction to Functional Analysis ... (previous) ... (next) $19.1$: The Hahn-Banach Theorem: Real Case