Definition:Whiskering
Jump to navigation
Jump to search
Definition
Let $B,C,D,E$ be categories.
Let $F, G : C \to D$ be covariant functors.
Let $\eta : F \to G$ be a natural transformation.
Natural Transformation followed by Functor
Let $H : D \to E$ be a covariant functor.
The right whiskering of $H$ and $\eta$ is the natural transformation $H\eta : H \circ F \to H \circ G$ between compositions of functors defined by $(H\eta)_A = H(\eta_A)$ for $A\in C$.
Functor followed by Natural Transformation
Let $K : B \to C$ be a covariant functor.
The left whiskering of $\eta$ and $K$ is the natural transformation $\eta K : F \circ K \to G \circ K$ between compositions of functors defined by $(\eta K)_A = \eta_{K(A)}$ for $A\in B$.