Denying the Antecedent

From ProofWiki
Jump to navigation Jump to search

Fallacy

Let $p \implies q$ be a conditional statement.

Let its antecedent $p$ be false.

Then it is a fallacy to assert that the consequent $q$ is also necessarily false.

That is:

\(\ds p\) \(\implies\) \(\ds q\)
\(\ds \neg p\) \(\) \(\ds \)
\(\ds \not \vdash \ \ \) \(\ds \neg q\) \(\) \(\ds \)


Corollary

Let $p \implies q$ be a conditional statement.

Let its antecedent $p$ be false.

Then nothing can be inferred about the truth value of $q$.


Proof

We apply the Method of Truth Tables to the proposition.

$\begin{array}{|ccc|cc||cc|} \hline p & \implies & q & \neg & p & \neg & q\\ \hline \F & \T & \F & \T & \F & \T & \F \\ \F & \T & \T & \T & \F & \F & \T \\ \T & \F & \F & \F & \T & \T & \F \\ \T & \T & \T & \F & \T & \F & \T \\ \hline \end{array}$

As can be seen, when $p \implies q$ is true, and so is $\neg p$, then it is not always the case that $\neg q$ is also true.

$\blacksquare$


Also see


Sources