Derivative of Cosine Function/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\dfrac \d {\d x} } {\cos x} = -\sin x$


Proof

\(\ds \map {\frac \d {\d x} } {\cos x}\) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {\map \cos {x + h} - \cos x} h\) Definition of Derivative of Real Function at Point
\(\ds \) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {\cos x \cos h - \sin x \sin h - \cos x} h\) Cosine of Sum
\(\ds \) \(=\) \(\ds \lim_{h \mathop \to 0} \frac {\cos x \cos h - \cos x} h + \lim_{h \mathop \to 0} \frac {-\sin x \sin h} h\) Sum Rule for Limits of Real Functions
\(\ds \) \(=\) \(\ds \cos x \lim_{h \mathop \to 0} \frac {\cos h - 1} h - \sin x \lim_{h \mathop \to 0} \frac {\sin h} h\) Multiple Rule for Limits of Real Functions
\(\ds \) \(=\) \(\ds \cos x \times 0 - \sin x \times 1\) Limit of $\dfrac {\cos x - 1} x$ at Zero and Limit of $\dfrac {\sin x} x$ at Zero
\(\ds \) \(=\) \(\ds -\sin x\)

$\blacksquare$