Derivative of Exponential Function/Complex

From ProofWiki
Jump to navigation Jump to search



Theorem

The complex exponential function is its own derivative.

That is:

$\map {D_z} {\exp z} = \exp z$


Proof from Sequence Definition

Take the definition of $\exp$ to be the limit of the sequence $\sequence {E_n}$ defined by:

$\ds \map {E_n} z = \paren {1 + \dfrac z n}^n$

Then $\left \langle{E_n}\right \rangle$ is uniformly convergent on compact subsets of $\C$.

Further, $\C$ is an open, connected subset of $\C$.

So the hypotheses of Derivative of Sequence of Holomorphic Functions are satisfied.

Hence:

\(\ds \map {D_z} {\exp z}\) \(=\) \(\ds \map {D_z} {\paren {1 + \dfrac z n}^n}\) Definition of Complex Exponential Function
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \map {D_z} {\paren {1 + \dfrac z n}^n}\) Derivative of Sequence of Holomorphic Functions
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \paren {n \paren {1 + \dfrac z n}^{n - 1} \times \frac 1 n}\) Chain Rule
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \paren {1 + \dfrac z n}^{n - 1}\)
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \paren {\paren {1 + \dfrac z n}^n \times \frac n {n + z} }\)
\(\ds \) \(=\) \(\ds \paren {\lim_{n \mathop \to \infty} \paren {1 + \dfrac z n}^n} \times \paren {\lim_{n \mathop \to \infty} \frac n {n + z} }\) Complex Derivative of Product is Product of Complex Derivative
\(\ds \) \(=\) \(\ds \exp z \times 1\) Definition of Complex Exponential Function

Hence the result.

$\blacksquare$