Derivative of Exponential at Zero/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\exp x$ be the exponential of $x$ for real $x$.


Then:

$\ds \lim_{x \mathop \to 0} \frac {\exp x - 1} x = 1$


Proof

As we consider $x \to 0$, we may assume that $0 < \size x \le 1$.

Then:

\(\ds \size {\frac {e^x - 1} x - 1}\) \(=\) \(\ds \size {\frac {e^x - 1 - x} x}\)
\(\ds \) \(=\) \(\ds \size {\frac {\sum_{n \mathop = 0}^\infty \frac {x^n} {n!} - 1 - x} x }\) Definition of Exponential Function
\(\ds \) \(=\) \(\ds \size {x \sum_{n \mathop = 2}^\infty \frac {x^{n-2} } {n !} }\)
\(\ds \) \(\le\) \(\ds \size x \sum_{n \mathop = 2}^\infty \frac 1 {n !}\) as $\size x \le 1$
\(\ds \) \(\le\) \(\ds \size x \sum_{n \mathop = 0}^\infty \frac 1 {n !}\)
\(\ds \) \(=\) \(\ds \size x e\) Definition of Euler's Number as Limit of Series
\(\ds \) \(\to\) \(\ds 0\) as $x \to 0$

$\blacksquare$