Derivative of Square Function/Proof 1
Jump to navigation
Jump to search
Theorem
Let $f: \R \to \R$ be the square function:
- $\forall x \in \R: \map f x = x^2$
Then the derivative of $f$ is given by:
- $\map {f'} x = 2 x$
Proof
\(\ds \map {f'} x\) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map f {x + h} - \map f x} h\) | Definition of Derivative of Real Function at Point | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\paren {x + h}^2 - x^2} h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {x^2 + 2 x h + h^2 - x^2} h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {2 x h + h^2} h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} 2 x + h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 x\) |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation: Standard Differential Coefficients
- 1937: Eric Temple Bell: Men of Mathematics ... (previous) ... (next): Chapter $\text{VI}$: On the Seashore
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $8$: The System of the World: Calculus