Difference of Fourth Powers of Secant and Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sec^4 x - \tan^4 x = \sec^2 x + \tan^2 x$


Proof

\(\ds \sec^4 x - \tan^4 x\) \(=\) \(\ds \sec^4 x - \frac {\sin^4 x} {\cos^4 x}\) Tangent is Sine divided by Cosine
\(\ds \) \(=\) \(\ds \frac 1 {\cos^4 x} - \frac {\sin^4 x} {\cos^4 x}\) Secant is Reciprocal of Cosine
\(\ds \) \(=\) \(\ds \frac {1 - \sin^4 x} {\cos^4x}\)
\(\ds \) \(=\) \(\ds \frac {1 - \sin^2 x \paren {1 - \cos^2 x} } {\cos^2 x \paren {1 - \sin^2 x} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \frac {1 - \sin^2 x + \sin^2 x \ \cos^2 x} {\cos^2 x - \sin^2 x \ \cos^2 x}\)
\(\ds \) \(=\) \(\ds \frac {\cos^2 x + \sin^2 x \ \cos^2 x} {\cos^2 x - \sin^2 x \ \cos^2 x}\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \frac {\cos^2 x \paren {1 + \sin^2 x} } {\cos^2 x \paren {1 - \sin^2 x} }\)
\(\ds \) \(=\) \(\ds \frac {1 + \sin^2 x} {1 - \sin^2 x}\)
\(\ds \) \(=\) \(\ds \frac {1 + \sin^2 x} {\cos^2 x}\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \frac 1 {\cos^2 x} + \frac {\sin^2 x} {\cos^2 x}\)
\(\ds \) \(=\) \(\ds \frac 1 {\cos^2 x} x + \tan^2 x\) Tangent is Sine divided by Cosine
\(\ds \) \(=\) \(\ds \sec^2 x + \tan^2 x\) Secant is Reciprocal of Cosine

$\blacksquare$