# Difference of Logarithms

Jump to navigation Jump to search

## Theorem

Let $x, y, b \in \R$ be strictly positive real numbers such that $b > 1$.

Then:

$\log_b x - \log_b y = \map {\log_b} {\dfrac x y}$

where $\log_b$ denotes the logarithm to base $b$.

## Proof 1

 $\ds \log_b x - \log_b y$ $=$ $\ds \map {\log_b} {b^{\log_b x - \log_b y} }$ Definition of General Logarithm $\ds$ $=$ $\ds \map {\log_b} {\frac {\paren {b^{\log_b x} } } {\paren {b^{\log_b y} } } }$ Quotient of Powers $\ds$ $=$ $\ds \map {\log_b} {\frac x y}$ Definition of General Logarithm

$\blacksquare$

## Proof 2

 $\ds \log_b x - \log_b y$ $=$ $\ds \frac {\log_e x} {\log_e b} - \frac {\log_e y} {\log_e b}$ Change of Base of Logarithm $\ds$ $=$ $\ds \frac {\log_e x - \log_e y} {\log_e b}$ $\ds$ $=$ $\ds \frac {\log_e \left({\frac x y}\right)} {\log_e b}$ Difference of Logarithms: Proof for Natural Logarithm $\ds$ $=$ $\ds \log_b \left({\frac x y}\right)$ Change of Base of Logarithm

$\blacksquare$

## Proof 3

 $\ds \map {\log_b} {\frac x y} + \log_b y$ $=$ $\ds \map {\log_b} {\frac x y \times y}$ Sum of Logarithms $\ds$ $=$ $\ds \log_b x$ $\ds \leadsto \ \$ $\ds \map {\log_b} {\frac x y}$ $=$ $\ds \log_b x - \log_b y$ subtracting $\log_b y$ from both sides

$\blacksquare$