Difference of Squares of Hyperbolic Cotangent and Cosecant

From ProofWiki
Jump to navigation Jump to search

Theorem

$\coth^2 x - \csch^2 x = 1$

where $\coth$ and $\csch$ are hyperbolic cotangent and hyperbolic cosecant.


Proof

\(\ds \coth^2 x - \csch^2 x\) \(=\) \(\ds \paren {\frac {e^x + e^{-x} } {e^x - e^{-x} } }^2 - \csch^2 x\) Definition 1 of Hyperbolic Cotangent
\(\ds \) \(=\) \(\ds \paren {\frac {e^x + e^{-x} } {e^x - e^{-x} } }^2 - \paren {\frac 2 {e^x - e^{-x} } }^2\) Definition 1 of Hyperbolic Cosecant
\(\ds \) \(=\) \(\ds \frac {e^{2 x} + 2 + e^{-2 x} - 4} {e^{2 x} - 2 + e ^{-2 x} }\) Exponent Combination Laws
\(\ds \) \(=\) \(\ds \frac {e^{2 x} - 2 + e ^{-2 x} } {e^{2 x} - 2 + e ^{-2 x} }\)
\(\ds \) \(=\) \(\ds 1\)

$\blacksquare$


Also presented as

Difference of Squares of Hyperbolic Cotangent and Cosecant can also be presented as:

$\csch^2 x = \coth^2 x - 1$

or:

$\coth^2 x = 1 + \csch^2 x$


Also see


Sources