Difference of Squares of Sines

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sin^2 A - \sin^2 B = \map \sin {A + B} \map \sin {A - B}$


Proof

\(\ds \sin^2 A - \sin^2 B\) \(=\) \(\ds \sin^2 A - \sin^2 B + 0\)
\(\ds \) \(=\) \(\ds \sin^2 A - \sin^2 B + \paren {\sin^2 A \sin^2 B - \sin^2 A \sin^2 B}\)
\(\ds \) \(=\) \(\ds \sin^2 A \paren {1 - \sin^2 B} - \sin^2 B \paren {1 - \sin^2 A}\)
\(\ds \) \(=\) \(\ds \sin^2 A \paren {\cos^2 B} - \sin^2 B \paren {\cos^2 A}\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \sin^2 A \cos^2 B - \sin^2 B \cos^2 A + 0\)
\(\ds \) \(=\) \(\ds \sin^2 A \cos^2 B - \sin^2 B \cos^2 A + \paren {\sin A \sin B \cos A \cos B - \sin A \sin B \cos A \cos B}\)
\(\ds \) \(=\) \(\ds \paren {\sin A \cos B + \cos A \sin B} \paren { \sin A \cos B - \cos A \sin B}\)
\(\ds \) \(=\) \(\ds \map \sin {A + B} \map \sin {A - B}\)

$\blacksquare$