Difference of Two Even Powers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\GF$ denote one of the standard number systems, that is $\Z$, $\Q$, $\R$ and $\C$.

Let $n \in \Z_{>0}$ be a (strictly) positive integer.


Then for all $a, b \in \GF$:

\(\ds a^{2 n} - b^{2 n}\) \(=\) \(\ds \paren {a - b} \paren {a + b} \sum_{j \mathop = 0}^{n - 1} a^{2 \paren {n - j - 1} } b^{2 j}\)
\(\ds \) \(=\) \(\ds \paren {a - b} \paren {a + b} \paren {a^{2 n - 2} + a^{2 n - 4} b^2 + a^{2 n - 6} b^4 + \dotsb + a^2 b^{2 n - 4} + b^{2 n - 2} }\)


Proof

\(\ds a^{2 n} - b^{2 n}\) \(=\) \(\ds \paren {a^2}^n - \paren {b^2}^n\)
\(\ds \) \(=\) \(\ds \paren {a^2 - b^2} \paren {\sum_{j \mathop = 0}^{n - 1} \paren {a^2} ^{n - j - 1} \paren {b^2}^j}\) Difference of Two Powers
\(\ds \) \(=\) \(\ds \paren {a - b} \paren {a + b} \sum_{j \mathop = 0}^{n - 1} a^{2 \paren {n - j - 1} } b^{2 j}\) Difference of Two Squares

whence the result.

$\blacksquare$


Also see