Difference of Unions is Subset of Union of Differences

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $I$ be an indexing set.

Let $S_\alpha, T_\alpha$ be sets, for all $\alpha \in I$.


Then:

$\ds \paren {\bigcup_{\alpha \mathop \in I} S_\alpha} \setminus \paren {\bigcup_{\alpha \mathop \in I} T_\alpha} \subseteq \bigcup_{\alpha \mathop \in I} \paren {S_\alpha \setminus T_\alpha}$

where $S_\alpha \setminus T_\alpha$ denotes set difference.


Proof

Let $\ds x \in \paren {\bigcup_{\alpha \mathop \in I} S_\alpha} \setminus \paren {\bigcup_{\alpha \mathop \in I} T_\alpha}$.

Then by definition of set difference:

\(\ds x\) \(\in\) \(\ds \bigcup_{\alpha \mathop \in I} S_\alpha\)
\(\ds x\) \(\notin\) \(\ds \bigcup_{\alpha \mathop \in I} T_\alpha\)


By definition of set union, it follows that:

\(\ds \exists \beta \in I: \, \) \(\ds x\) \(\in\) \(\ds S_\beta\)
\(\ds \neg \exists \beta \in I: \, \) \(\ds x\) \(\in\) \(\ds T_\beta\)
\(\ds \leadsto \ \ \) \(\ds \forall \beta \in I: \, \) \(\ds x\) \(\notin\) \(\ds T_\beta\) De Morgan's Laws (Predicate Logic)

and so:

$\exists \beta \in I: x \in S_\beta \setminus T_\beta$


Hence:

$\ds x \in \bigcup_{\alpha \mathop \in I} \paren {S_\alpha \setminus T_\alpha}$

by definition of set union.

The result follows by definition of subset.

$\blacksquare$


Sources