Dipper Operation is Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m, n \in \Z$ be integers such that $m \ge 0, n > 0$.

Let $\N_{< \paren {m \mathop + n} }$ denote the initial segment of the natural numbers:

$\N_{< \paren {m \mathop + n} } := \set {0, 1, \ldots, m + n - 1}$


The dipper operation on $\N_{< \paren {m \mathop + n} }$ is associative.


Proof

Recall the definition of the dipper operation on $\N_{< \paren {m \mathop + n} }$ defined as:

$\forall a, b \in \Z_{>0}: a +_{m, n} b = \begin{cases}

a + b & : a + b < m \\ a + b - k n & : a + b \ge m \end{cases}$

where $k$ is the largest integer satisfying:

$m + k n \le a + b$


Let $a, b, c \in \N_{< \paren {m \mathop + n} }$ be arbitrary.

There are a number of cases to address.

By Dipper Operation is Commutative it is possible to arrange $a$, $b$ and $c$ into any order, and the result of $\paren {a +_{m, n} b} +_{m, n} c$ and $a +_{m, n} \paren {b +_{m, n} c}$ will be unaffected.

Without loss of generality, therefore, it is sufficient to consider the scenario where $a \le b \le c$.


Case 1
Let $a + b + c < m$.

Then:

\(\ds \paren {a +_{m, n} b} +_{m, n} c\) \(=\) \(\ds \paren {a + b} + c\) Definition of $+_{m, n}$
\(\ds \) \(=\) \(\ds a + \paren {b + c}\) Natural Number Addition is Associative
\(\ds \) \(=\) \(\ds a +_{m, n} \paren {b +_{m, n} c}\) Definition of $+_{m, n}$


Otherwise $a + b + c \ge m$.


Case 2
Let $a + b < m$ and $b + c < m$.

Then:

\(\ds \paren {a +_{m, n} b} +_{m, n} c\) \(=\) \(\ds \paren {a + b} +_{m, n} c\) Definition of $+_{m, n}$
\(\ds \) \(=\) \(\ds \paren {a + b} + c - k n\) Definition of $+_{m, n}$ \(\quad\) where $k = \max \set {k: m + k n \le \paren {a + b} + c}$
\(\ds \) \(=\) \(\ds a + \paren {b + c} - k n\) Natural Number Addition is Associative \(\quad\) where $k = \max \set {k: m + k n \le a + \paren {b + c} }$
\(\ds \) \(=\) \(\ds a +_{m, n} \paren {b + c}\) Definition of $+_{m, n}$
\(\ds \) \(=\) \(\ds a +_{m, n} \paren {b +_{m, n} c}\) Definition of $+_{m, n}$


Case 3
Let $a + b < m$ and $b + c \ge m$.

Then:

\(\ds \paren {a +_{m, n} b} +_{m, n} c\) \(=\) \(\ds \paren {a + b} +_{m, n} c\) Definition of $+_{m, n}$
\(\ds \) \(=\) \(\ds \paren {a + b} + c - k n\) Definition of $+_{m, n}$ \(\quad\) where $k = \max \set {k: m + k n \le \paren {a + b} + c}$

and:

\(\ds a +_{m, n} \paren {b +_{m, n} c}\) \(=\) \(\ds a +_{m, n} \paren {b + c - k_1 n}\) Definition of $+_{m, n}$ \(\quad\) where $k_1 = \max \set {k: m + k n \le b + c}$
\(\ds \) \(=\) \(\ds \begin {cases} a + \paren {b + c - k_1 n} & : a + \paren {b + c - k_1 n} < m \\ a + \paren {b + c - k_1 n} - k_2 n & : a + \paren {b + c - k_1 n} \ge m \end {cases}\) Definition of $+_{m, n}$ \(\quad\) where $k_2 = \max \set {k: m + k n \le a + \paren {b + c - k_1 n} }$
\(\ds \) \(=\) \(\ds a + \paren {b + c} - k n\) \(\quad\) where $k = \max \set {k: m + k n \le a + \paren {b + c} }$
\(\ds \) \(=\) \(\ds \paren {a + b} + c - k n\) Natural Number Addition is Associative \(\quad\) where $k = \max \set {k: m + k n \le \paren {a + b} + c}$


Case 4
Let $a + b \ge m$ and $b + c \ge m$.

Then:

\(\ds \paren {a +_{m, n} b} +_{m, n} c\) \(=\) \(\ds \paren {a + b - k_1 n} +_{m, n} c\) Definition of $+_{m, n}$ \(\quad\) where $k_1 = \max \set {k: m + k n \le a + b}$
\(\ds \) \(=\) \(\ds \begin {cases} \paren {a + b - k_1 n} + c & : \paren {a + b - k_1 n} + c < m \\ \paren {a + b - k_1 n} + c - k_2 n & : \paren {a + b - k_1 n} + c \ge m \end {cases}\) Definition of $+_{m, n}$ \(\quad\) where $k_2 = \max \set {k: m + k n \le \paren {a + b - k_1 n} + c}$
\(\ds \) \(=\) \(\ds \paren {a + b} + c - k n\) \(\quad\) where $k = \max \set {k: m + k n \le \paren {a + b} + c}$

and:

\(\ds a +_{m, n} \paren {b +_{m, n} c}\) \(=\) \(\ds a +_{m, n} \paren {b + c - k_1 n}\) Definition of $+_{m, n}$ \(\quad\) where $k_1 = \max \set {k: m + k n \le b + c}$
\(\ds \) \(=\) \(\ds \begin {cases} a + \paren {b + c - k_1 n} & : a + \paren {b + c - k_1 n} < m \\ a + \paren {b + c - k_1 n} - k_2 n & : a + \paren {b + c - k_1 n} \ge m \end {cases}\) Definition of $+_{m, n}$ \(\quad\) where $k_2 = \max \set {k: m + k n \le a + \paren {b + c - k_1 n} }$
\(\ds \) \(=\) \(\ds a + \paren {b + c} - k n\) \(\quad\) where $k = \max \set {k: m + k n \le a + \paren {b + c} }$
\(\ds \) \(=\) \(\ds \paren {a + b} + c - k n\) Natural Number Addition is Associative


So in all cases:

$\paren {a +_{m, n} b} +_{m, n} c = a +_{m, n} \paren {b +_{m, n} c}$

and the result follows by definition of associative operation.

$\blacksquare$


Also see


Sources