Dipper Operation is Closed on Initial Segment

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m \in \N$ be a natural number.

Let $n \in \N_{>0}$ be a non-zero natural number.

Let $\N_{< \paren {m \mathop + n} }$ denote the initial segment of the natural numbers:

$\N_{< \paren {m \mathop + n} } := \set {0, 1, \ldots, m + n - 1}$


Let $+_{m, n}$ denote the dipper operation on $\N_{< \paren {m \mathop + n} }$:

$\forall a, b \in \N_{< \paren {m \mathop + n} }: a +_{m, n} b = \begin{cases}

a + b & : a + b < m \\ a + b - k n & : a + b \ge m \end{cases}$ where $k$ is the largest integer satisfying:

$m + k n \le a + b$


Then $+_{m, n}$ is closed on $\N_{< \paren {m \mathop + n} }$.


Proof

Let $a + b < m$.

Then:

$0 \le a +_{m, n} b < m$

and so:

$a +_{m, n} b \in \N_{< \paren {m \mathop + n} }$


Let $a + b > m$.

Then:

$a +_{m, n} b = a + b - k n$

where $k$ is the largest such that $m + k n < a + b$

Hence:

\(\ds m + k n\) \(\le\) \(\, \ds a + b \, \) \(\, \ds < \, \) \(\ds m + \paren {k + 1} n\) Definition of $k$
\(\ds \leadsto \ \ \) \(\ds m\) \(\le\) \(\, \ds a + b - k n \, \) \(\, \ds < \, \) \(\ds m + n\) subtracting $k n$ from all parts
\(\ds \leadsto \ \ \) \(\ds m\) \(\le\) \(\, \ds a +_{m, n} b \, \) \(\, \ds < \, \) \(\ds m + n\) Definition of $+_{m, n}$

That is:

$a +_{m, n} b \in \N_{< \paren {m \mathop + n} }$


That is, $+_{m, n}$ is closed on $\N_{< \paren {m \mathop + n} }$.

$\blacksquare$