Dipper Relation is Equivalence Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m \in \N$ be a natural number.

Let $n \in \N_{>0}$ be a non-zero natural number.


Let $\RR_{m, n}$ be the dipper relation on $\N$:

$\forall x, y \in \N: x \mathrel {\RR_{m, n} } y \iff \begin {cases} x = y \\ m \le x < y \text { and } n \divides \paren {y - x} \\ m \le y < x \text { and } n \divides \paren {x - y} \end {cases}$


Then $\RR_{m, n}$ is an equivalence relation.


Proof

First let it be noted that $\RR_{m, n}$ can be written as:

$\forall x, y \in \N: x \mathrel {\RR_{m, n} } y \iff \begin {cases} x = y \\ m \le x, y \text { and } n \divides \size {x - y} \end {cases}$

where $\size {x - y}$ denotes the absolute value of $x - y$.


Checking in turn each of the criteria for equivalence:


Reflexivity

We have that:

$\forall x \in \N: x = x$

and so:

$x \mathrel {\RR_{m, n} } x$

Thus $\RR_{m, n}$ is seen to be reflexive.

$\Box$


Symmetry

Let $x, y \in \N$ such that $x \mathrel {\RR_{m, n} } y$.

If $x = y$ then trivially $y = x$ and so:

$y \mathrel {\RR_{m, n} } x$


Otherwise note that:

$n \divides \size {x - y} \iff n \divides \size {y - x}$

and it follows directly that:

$y \mathrel {\RR_{m, n} } x$


Thus $\RR_{m, n}$ is seen to be symmetric.

$\Box$


Transitivity

Let $x, y, z \in \N$ such that $x \mathrel {\RR_{m, n} } y$ and $y \mathrel {\RR_{m, n} } z$.


First suppose $x = y$ or $y = z$ or $x = z$.

Then trivially $x \mathrel {\RR_{m, n} } z$.


Otherwise we have that:

$x \ne y \ne z \ne x$

and:

$x, y, z \ge m$

Without loss of generality, let $x < y < z$.

If not, then as $\RR_{m, n}$ is symmetric we can rename $x$, $y$ and $z$ as necessary.


Then:

\(\ds x\) \(\RR_{m, n}\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds n\) \(\divides\) \(\ds \paren {y - x}\) Definition of $\RR_{m, n}$
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \exists k_1 \in \N_{>0}: \, \) \(\ds k_1 n\) \(=\) \(\ds \paren {y - x}\) Definition of Divisor of Integer
\(\ds y\) \(\RR_{m, n}\) \(\ds z\)
\(\ds \leadsto \ \ \) \(\ds n\) \(\divides\) \(\ds \paren {z - y}\) Definition of $\RR_{m, n}$
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \exists k_2 \in \N_{>0}: \, \) \(\ds k_2 n\) \(=\) \(\ds \paren {z - y}\) Definition of Divisor of Integer
\(\ds \leadsto \ \ \) \(\ds \paren {k_1 + k_2} n\) \(=\) \(\ds \paren {y - x} + \paren {z - y}\) from $(1)$ and $(2)$
\(\ds \leadsto \ \ \) \(\ds \exists k_3 \in \N_{>0}: \, \) \(\ds k_3 n\) \(=\) \(\ds \paren {z - x}\) where $k_3 = k_1 + k_2$
\(\ds \leadsto \ \ \) \(\ds n\) \(\divides\) \(\ds \paren {z - x}\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\RR_{m, n}\) \(\ds z\)

Thus $\RR_{m, n}$ is seen to be transitive.

$\Box$


Thus $\RR_{m, n}$ has been shown to be reflexive, symmetric and transitive.

Hence by definition it is an equivalence relation.

$\blacksquare$


Sources