Direct Image Mapping of Domain is Image Set of Mapping

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $\powerset S$ and $\powerset T$ be their power sets.

Let $f \subseteq S \times T$ be a mapping from $S$ to $T$.

Let $f^\to: \powerset S \to \powerset T$ be the direct image mapping of $f$:

$\forall X \in \powerset S: \map {f^\to} X = \begin {cases} \set {t \in T: \exists s \in X: \map f s = t} & : X \ne \O \\ \O & : X = \O \end {cases}$


Then:

$\map {f^\to} S = \Img f$

where $\Img f$ is the image set of $f$.


Proof

\(\ds y\) \(\in\) \(\ds \map {f^\to} S\)
\(\ds \leadstoandfrom \ \ \) \(\ds \exists x \in S: \, \) \(\ds \map f x\) \(=\) \(\ds y\) Definition of Direct Image Mapping of Mapping
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(\in\) \(\ds \Img f\) Definition of Image Set of Mapping

$\blacksquare$