Distance Function for Distinct Elements in Metric Space is Strictly Positive
Jump to navigation
Jump to search
Theorem
Let $A$ be a set.
Let $d: A \times A \to \R$ be a real-valued function on $A$ with the following properties:
\((\text M 1')\) | $:$ | \(\ds \forall x, y \in A:\) | \(\ds \map d {x, y} = 0 \iff x = y \) | ||||||
\((\text M 2)\) | $:$ | \(\ds \forall x, y, z \in A:\) | \(\ds \map d {x, y} + \map d {y, z} \ge \map d {x, z} \) | ||||||
\((\text M 3)\) | $:$ | \(\ds \forall x, y \in A:\) | \(\ds \map d {x, y} = \map d {y, x} \) |
which can be considered as being an alternative formulation of the metric space axioms.
Then:
- $\forall x, y \in A: x \ne y \implies \map d {x, y} > 0$
which is Metric Space Axiom $(\text M 4)$.
Thus $d$ is a distance function, so making $M := \struct {A, d}$ a metric space.
Proof
\(\ds \forall x, y \in A: \, \) | \(\ds \map d {x, y} + \map d {y, x}\) | \(\ge\) | \(\ds \map d {x, x}\) | from Metric Space Axiom $(\text M 2)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 \map d {x, y}\) | \(\ge\) | \(\ds 0\) | from Axiom $(\text M 1')$ above and Metric Space Axiom $(\text M 3)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map d {x, y}\) | \(\ge\) | \(\ds 0\) |
$\blacksquare$