Divisibility of Numerator of Sum of Sequence of Reciprocals/Lemma
Jump to navigation
Jump to search
Lemma for Divisibility of Numerator of Sum of Sequence of Reciprocals
Let $n \in \Z_{>0}$ be a (strictly) positive integer.
Then:
- $\ds \sum_{k \mathop = 1}^n \dfrac {\paren {-1}^{k - 1} } k \dbinom n k = \sum_{k \mathop = 1}^n \dfrac 1 k$
where $\dbinom n k$ denotes a binomial coefficient.
Proof
Expanding the summation:
Let:
\(\ds \map f n\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dfrac {\paren {-1}^{k - 1} } k \dbinom n k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n - \dfrac 1 2 \dbinom n 2 + \dfrac 1 3 \dbinom n 3 - \cdots + \dfrac {\paren {-1}^{n - 2} } {n - 1} \dbinom n {n - 1} + \dfrac {\paren {-1}^{n - 1} } n\) |
Then we have:
\(\ds \map f {n - 1}\) | \(=\) | \(\ds \sum_{k \mathop = 1}^{n - 1} \dfrac {\paren {-1}^{k - 1} } k \dbinom {n - 1} k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {n - 1} - \dfrac 1 2 \dbinom {n - 1} 2 + \dfrac 1 3 \dbinom {n - 1} 3 - \cdots + \dfrac {\paren {-1}^{n - 3} } {n - 2} \dbinom {n - 1} {n - 2} + \dfrac {\paren {-1}^{n - 2} } {n - 1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map f n - \map f {n - 1}\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dfrac {\paren {-1}^{k - 1} } k \dbinom n k - \sum_{k \mathop = 1}^{n - 1} \dfrac {\paren {-1}^{k - 1} } k \dbinom {n - 1} k\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^{n - 1} \dfrac {\paren {-1}^{k - 1} } k \paren {\dbinom n k - \dbinom {n - 1} k} + \dfrac {\paren {-1}^{n - 1} } n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^{n - 1} \dfrac {\paren {-1}^{k - 1} } k \dbinom {n - 1} {k - 1} + \dfrac {\paren {-1}^{n - 1} } n\) | Pascal's Rule |
![]() | This needs considerable tedious hard slog to complete it. In particular: working on it, might be worth using induction To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
The proof proceeds by induction.
For all $n \in \Z_{>0}$, let $\map P n$ be the proposition:
- $\ds \sum_{k \mathop = 1}^n \dfrac {\paren {-1}^{k - 1} } k \dbinom n k = \sum_{k \mathop = 1}^n \dfrac 1 k$
Basis for the Induction
$\map P 1$ is the case:
\(\ds \sum_{k \mathop = 1}^1 \dfrac {\paren {-1}^{k - 1} } k \dbinom 1 k\) | \(=\) | \(\ds \dfrac {\paren {-1}^0} 1 \dbinom 1 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | Binomial Coefficient with One or Binomial Coefficient with Self | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^1 \dfrac 1 k\) |
Thus $\map P 1$ is seen to hold.
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that if $\map P r$ is true, where $r \ge 1$, then it logically follows that $\map P {r + 1}$ is true.
So this is the induction hypothesis:
- $\ds \sum_{k \mathop = 1}^r \dfrac {\paren {-1}^{k - 1} } k \dbinom r k = \sum_{k \mathop = 1}^r \dfrac 1 k$
from which it is to be shown that:
- $\ds \sum_{k \mathop = 1}^{r + 1} \dfrac {\paren {-1}^{k - 1} } k \dbinom {r + 1} k = \sum_{k \mathop = 1}^{r + 1} \dfrac 1 k$
Induction Step
This is the induction step:
\(\ds \sum_{k \mathop = 1}^{r + 1} \dfrac {\paren {-1}^{k - 1} } k \dbinom {r + 1} k\) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac {\paren {-1}^{k - 1} } k \dbinom {r + 1} k + \dfrac {\paren {-1}^r} {r + 1} \dbinom {r + 1} {r + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac {\paren {-1}^{k - 1} } k \dbinom {r + 1} k + \dfrac {\paren {-1}^r} {r + 1}\) | Binomial Coefficient with Self | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac {\paren {-1}^{k - 1} } k \paren {\dbinom r k + \dbinom r {k - 1} } + \dfrac {\paren {-1}^r} {r + 1}\) | Pascal's Rule | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac {\paren {-1}^{k - 1} } k \dbinom r k + \sum_{k \mathop = 1}^r \dfrac {\paren {-1}^{k - 1} } k \dbinom r {k - 1} + \dfrac {\paren {-1}^r} {r + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac 1 k + \sum_{k \mathop = 1}^r \dfrac {\paren {-1}^{k - 1} } k \dbinom r {k - 1} + \dfrac {\paren {-1}^r} {r + 1}\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac 1 k + \sum_{k \mathop = 0}^{r - 1} \dfrac {\paren {-1}^k} {k + 1} \dbinom r k + \dfrac {\paren {-1}^r} {r + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac 1 k + \sum_{k \mathop = 0}^r \dfrac {\paren {-1}^k} {k + 1} \dbinom r k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac 1 k + \sum_{k \mathop = 0}^r \dfrac {\paren {-1}^k} {k + 1} \paren { \dfrac {k + 1} {r + 1} \dbinom {r + 1} {k + 1} }\) | Factors of Binomial Coefficient | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac 1 k + \dfrac 1 {r + 1} \sum_{k \mathop = 0}^r \paren {-1}^k \dbinom {r + 1} {k + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac 1 k + \dfrac 1 {r + 1} \sum_{k \mathop = 1}^{r + 1} \paren {-1}^{k - 1} \dbinom {r + 1} k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac 1 k + \dfrac 1 {r + 1} \paren { - \sum_{k \mathop = 0}^{r + 1} \paren {-1}^k \dbinom {r + 1} k + \dbinom {r + 1} 0 }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac 1 k + \dfrac 1 {r + 1}\) | Alternating Sum and Difference of Binomial Coefficients for Given n, Binomial Coefficient with Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^{r + 1} \dfrac 1 k\) |
So $\map P r \implies \map P {r + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\ds \forall n \in \Z_{>0}: \sum_{k \mathop = 1}^n \dfrac {\paren {-1}^{k - 1} } k \dbinom n k = \sum_{k \mathop = 1}^n \dfrac 1 k$
$\blacksquare$
Sources
- 1862: Joseph Wolstenholme: On certain properties of prime numbers (Quart. J. Pure Appl. Math. Vol. 5: pp. 35 – 39)