Division Subring of Normed Division Ring

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, \norm {\, \cdot \,} }$ be a normed division ring.

Let $S$ be a division subring of $R$.

Then:

$\struct {S, \norm {\, \cdot \,}_S}$ is a normed division subring of $\struct {R, \norm {\, \cdot \,} }$

where $\norm {\, \cdot \,}_S$ is the norm $\norm {\,\cdot\,}$ restricted to $S$.


Proof

Norm Axiom $\text N 1$: Positive Definiteness

\(\ds \forall x \in S: \, \) \(\ds \norm x_S\) \(=\) \(\ds 0\)
\(\ds \leadstoandfrom \ \ \) \(\ds \norm x\) \(=\) \(\ds 0\) Definition of $\norm x_S$
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds 0\) Norm Axiom $\text N 1$: Positive Definiteness

$\Box$


Norm Axiom $\text N 2$: Multiplicativity

\(\ds \forall x, y \in S: \, \) \(\ds \norm {x y}_S\) \(=\) \(\ds \norm {x y}\) Definition of $\norm {\, \cdot \,}_S$
\(\ds \) \(=\) \(\ds \norm x \norm y\) Norm Axiom $\text N 2$: Multiplicativity
\(\ds \) \(=\) \(\ds \norm x_S \norm y_S\) Definition of $\norm {\, \cdot \,}_S$


$\Box$


Norm Axiom $\text N 3$: Triangle Inequality

\(\ds \forall x, y \in S: \, \) \(\ds \norm {x + y}_S\) \(=\) \(\ds \norm {x + y}\) Definition of $\norm {\, \cdot \,}_S$
\(\ds \) \(\le\) \(\ds \norm x + \norm y\) Norm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(=\) \(\ds \norm x_S + \norm y_S\) Definition of $\norm {\, \cdot \,}_S$

$\blacksquare$