Division of Complex Numbers in Exponential Form

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z_1 := r_1 e^{i \theta_1}$ and $z_2 := r_2 e^{i \theta_2}$ be complex numbers expressed in exponential form.


Then:

$\dfrac {z_1} {z_2} = \dfrac {r_1} {r_2} e^{i \paren {\theta_1 - \theta_2} }$


Proof

\(\ds \frac {z_1} {z_2}\) \(=\) \(\ds \frac {r_1 e^{i \theta_1} } {r_2 e^{i \theta_2} }\) Definition of Exponential Form of Complex Number
\(\ds \) \(=\) \(\ds \frac {r_1 \paren {\cos \theta_1 + i \sin \theta_1 } } {r_2 \paren {\cos \theta_2 + i \sin \theta_2} }\) Euler's Formula
\(\ds \) \(=\) \(\ds \frac {r_1} {r_2} \paren {\map \cos {\theta_1 - \theta_2} + i \map \sin {\theta_1 - \theta_2} }\) Division of Complex Numbers in Polar Form
\(\ds \) \(=\) \(\ds \frac {r_1} {r_2} e^{i \paren {\theta_1 - \theta_2} }\) Euler's Formula

$\blacksquare$


Sources